Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles.

نویسندگان

  • F L Booker
  • C A Maier
چکیده

Concentrations of total soluble phenolics, catechin, proanthocyanidins (PA), lignin and nitrogen (N) were measured in loblolly pine (Pinus taeda L.) needles exposed to either ambient CO(2) concentration ([CO(2)]), ambient plus 175 or ambient plus 350 micromol CO(2) mol(-1) in branch chambers for 2 years. The CO(2) treatments were superimposed on a 2 x 2 factorial combination of irrigation and fertilization treatments. In addition, we compared the effects of branch chambers and open-top chambers on needle chemistry. Proanthocyanidin and N concentrations were measured in needles from branch chambers and from trees in open-top chambers exposed concurrently for two years to either ambient [CO(2)] or ambient plus 200 micromol CO(2) mol(-1) in combination with a fertilization treatment. In the branch chambers, concentrations of total soluble phenolics in needles generally increased with needle age. Concentrations of total soluble phenolics, catechin and PA in needle extracts increased about 11% in response to the elevated [CO(2)] treatments. There were no significant treatment effects on foliar lignin concentrations. Nitrogen concentrations were about 10% lower in needles from the elevated [CO(2)] treatments than in needles from the ambient [CO(2)] treatments. Soluble phenolic and PA concentrations were higher in the control and irrigated soil treatments in about half of the comparisons; otherwise, differences were not statistically significant. Needle N concentrations increased 23% in response to fertilization. Treatment effects on PA and N concentrations were similar between branch and open-top chambers, although in this part of the study N concentrations were not significantly affected by the CO(2) treatments in either the branch or open-top chambers. We conclude that elevated [CO(2)] and low N availability affected foliar chemical composition, which could in turn affect plant-pathogen interactions, decomposition rates and mineral nutrient cycling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irrigation and fertilization effects on foliar and soil carbon and nitrogen isotope ratios in a loblolly pine stand

We examined 6I3C and 6 " ~ in needle (current and 1-year-old) and soil samples collected on two occasions (July and September 1999) from a 15-year-old loblolly pine (Pinus taeda L.) stand in an irrigation and fertilization experiment to investigate whether these treatments leave specific isotope signals in the samples and thus to infer the effects of treatments on C and N cycling. Irrespective ...

متن کامل

Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization.

We used whole-tree, open-top chambers to expose 13-year-old loblolly pine (Pinus taeda L.) trees, growing in soil with high or low nutrient availability, to either ambient or elevated (ambient + 200 micromol mol-1) carbon dioxide concentration ([CO2]) for 28 months. Branch growth and morphology, foliar chemistry and gas exchange characteristics were measured periodically in the upper, middle an...

متن کامل

Branch growth and gas exchange in 13 - year - old loblolly pine ( Pinus taeda ) trees in response to elevated carbon dioxide concentration and fertilization CHRIS

We used whole-tree, open-top chambers to expose 13-year-old loblolly pine (Pinus taeda L.) trees, growing in soil with high or low nutrient availability, to either ambient or elevated (ambient + 200 µmol mol –1) carbon dioxide concentration ([CO 2 ]) for 28 months. Branch growth and morphology , foliar chemistry and gas exchange characteristics were measured periodically in the upper, middle an...

متن کامل

Does elevated CO2 alter silica uptake in trees?

Human activities have greatly altered global carbon (C) and Nitrogen (N) cycling. In fact, atmospheric concentrations of carbon dioxide (CO2) have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global CO2 fertilization, long-term free-air CO2 enrichment experiments have been ...

متن کامل

Genetic effects on total phenolics, condensed tannins and non-structural carbohydrates in loblolly pine (Pinus taeda L.) needles.

Carbon allocation to soluble phenolics (total phenolics, proanthocyanidins (PA)) and total non-structural carbohydrates (TNC; starch and soluble sugars) in needles of widely planted, highly productive loblolly pine (Pinus taeda L.) genotypes could impact stand resistance to herbivory, and biogeochemical cycling in the southeastern USA. However, genetic and growth-related effects on loblolly pin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tree physiology

دوره 21 9  شماره 

صفحات  -

تاریخ انتشار 2001